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Abstract— Mixed human-robot teams (HRTs) have the po-
tential to perform complex tasks by leveraging diverse and
complementary capabilities within the team. However, assigning
humans to operator roles in HRTs is challenging due to the
significant variation in user capabilities. While much of prior
work in role assignment treats humans as interchangeable
(either generally or within a category), we investigate the
utility of personalized models of operator capabilities based
in relevant human factors in an effort to improve overall
team performance. We call this approach individualized role
assignment (IRA) and provide a formal definition. A key
challenge for IRA is associated with the fact that factors that
affect human performance are not static (e.g., one’s ability to
track multiple objects can change during or between tasks).
Instead of relying on time-consuming and highly-intrusive
measurements taken during the execution of tasks, we propose
the use of short cognitive tests, taken before engaging in human-
robot tasks, and predictive models of individual performance
to perform IRA. Results from a comprehensive user study
conclusively demonstrate that IRA leads to significantly better
team performance than a baseline method that assumes human
operators are interchangeable, even when we control for the
influence of the robots’ performance. Further, our results point
to the possibility that such relative benefits of IRA will increase
as the number of operators (i.e., choices) increase for a fixed
number of tasks.

I. INTRODUCTION

Mixed human-robot teams with close collaboration be-
tween humans and robots are currently being explored across
a wide range of domains, including manufacturing [9], [18],
[36], defense [8], and search and rescue [23]. To facilitate
coordination across team members, each agent must be
assigned a job to perform, which is a challenge known as the
role assignment problem. Prior work on role assignment has
demonstrated that we can take advantage of heterogeneous
capabilities within a team by allocating agents to tasks or
roles such that team performance is maximized [16], [19],
[28], [35]. Such methods have typically been applied to
robotic agents; however, they can equally be applied to
human agents.

Existing role allocation methods that have considered hu-
man agents either model all humans as interchangeable [11],
[23], [36], or distinguish high level categories of humans
(e.g., medic vs. firefighter) while still treating every member
within that category as interchangeable [28]. However, recent
work has demonstrated that people vary greatly in their
performances in human-robot task domains [20]. Extensive
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investigation in human factors has revealed that human-robot
team performance is significantly impacted by individual
cognitive differences between humans. Specifically, individ-
ual differences between operators with respect to situational
awareness, visual attention, and spatial reasoning capabilities
all have been shown to considerably impact human-robot
teaming performance [4], [6], [8], [17].

In this work, we first attempt to bridge the gap between
role assignment algorithms that do not respect individual
differences in humans and the insights from human factors
literature that point to the importance of such differences.
We do so by considering personalized models of operator
capabilities based in relevant human factors when assigning
roles to human operators. We hypothesize that considering
such personalized models will improve role assignment and
overall team performance by assigning each operator to roles
that more closely match their strengths.

A critical challenge in modeling individual human ca-
pabilities is that relevant human factors that affect team
performance are not constant; they are influenced by fatigue,
cognitive workload, behavior of the robot team, and other
characteristics that can change over time [3], [16]. Typical
methods that measure such factors, such as the well-studied
SAGAT questionnaire [13], are time-consuming and often
highly intrusive as they require interrupting the operator
during task execution.

To address the above challenges and enable practical role
assignment based on individualized differences, we require
a fast and efficient means by which to measure these human
capabilities and predict performance. Our recent work has
demonstrated that short cognitive tests, taken before engaging
in human-robot tasks, can help predict performance [20].
Leveraging such recent advances, we hypothesize that using
abstracted cognitive tests that are easy to administer before
engagement in robot operation tasks can effectively inform
role assignment algorithms that wish to account for individ-
ual differences.

Concretely, our work explores the research question: can
the performance of human-robot teaming be improved by
leveraging cognitive states for role assignment? We are
specifically interested in multi-human multi-robot teaming,
where each team member is to be assigned to a unique robot
operation role.

We contribute a role assignment pipeline that leverages
easy-to-administer cognitive tests to perform effective as-
signment of human operators. Our approach first constructs a
predictive model that encodes the relationship between cog-
nitive test scores and performance on robot operation tasks.
This predictive model is constructed offline by measuring



both cognitive test scores and task performance scores of
human subjects. Subsequently, our pipeline optimizes the
role assignment such that the team’s predicted cumulative
performance across all tasks is maximized.

We conducted a comprehensive user study involving 29
individual participants and 3654 possible teams. As our work
is the first to apply cognitive states in assigning people to
robot operation roles, we compared the performance of our
pipeline to a baseline that ignores such cognitive states and
assigns roles uniformly randomly. Our results show that our
pipeline outperforms the baseline. Notably, we are able to
demonstrate that team performance is improved using solely
the cognitive states in the areas we measured, without any
prior knowledge of the team members’ capabilities at the
human-robot tasks.

Video demonstrations of the human-robot tasks and cogni-
tive tests presented in this paper, as well as the source code,
are available at https://github.com/GT-RAIL/
cognitive-states—in—-human-robot-teaming.

II. RELATED WORK

Our work is informed by the rich literature in human
factors research. Extensive studies in this area have shown
that human-robot team performance is significantly impacted
by individual cognitive differences between humans [6], [8].

One widely studied characteristic is attentional control,
which is defined as a person’s ability to focus and shift
attention in a flexible manner [10]. Since multi-robot control
tasks inherently require an operator to perform multitasking,
it is not surprising that human ability to coordinate multi-
robot teams has been tied to the operator’s attentional control
ability. Prior work has shown that there are individual
differences in multitasking performance between operators
[30], [34] and that poor attentional control is closely related
to low operator performance [4], [17]. Furthermore, studies
show that operators with better attentional control are able
to allocate their attention more flexibly and effectively, and
attention-switching flexibility can predict performance on
complex tasks [1], [2]. In our work, we particularly focus on
visual attention control, a specific form of attention control
as it related to visual perception [12].

Additional human factors tied to differing operator abilities
are spatial ability and situational awareness, both of which
have also been shown to impact operator performance in
multi-robot tasks [6], [7]. For example, operators with higher
spatial ability have been shown to exhibit more effective
visual scanning and target detection techniques during HRI-
related multitasking [5]-[7].

In prior work, visual attention control, spatial ability, and
situational awareness have been measured through a variety
of cognitive tasks. Visual attention tests were first developed
in the 1980°’s [27] to understanding the impacts of design
and training on visual attention control [32], [33]. These
tests present users with identical balls bouncing around a
contained screen area, and task the user with tracking select
balls for a duration. Situational Awareness tests developed
in parallel [13], tasking users with observing domains for

short durations and then recounting descriptive and infer-
ential information about environment elements. Our work
develops and adopts short (under 10 minutes) tests that can
effectively measure visual attention control, spatial ability,
and situational awareness by leveraging recent advances in
neuroscience and human factors [21], [24], [31]. Further,
we administer these tests on abstracted settings before the
operators engage in robot control tasks.

Additionally, physiological signals, such as heart rate [22],
[25], have been used as real-time indicators of cognitive state
during human-robot teaming. In this work, we limit ourselves
to a priori role assignment, though real-time reassignment
remains an important direction for future work.

Closely related to our work are efforts in which task as-
signment between multiple agents is performed with account
for workload. Such works include [15], in which allocation
is adapted between a human and a (single) robot, and [29],
in which multiple humans are considered. While individual
workload has been shown to be significant contributing factor
to team performance, these works do not model or leverage
individual differences in other relevant cognitive human
factors. Further, existing methods either assume that human
operators are interchangeable, or have been only evaluated
in simulation. In contrast, we embrace inherent differences
across three cognitive skills and evaluate our approach using
a comprehensive user study.

III. PROBLEM FORMULATION

Our overall objective is to maximize the performance of
large, heterogeneous, human-robot teams. Prior works have
extensively explored algorithms for assigning robots to tasks
[16], [19], [28], [35]. In this work, we instead examine the
problem of assigning human operators to roles so as to
maximize the performance of the joint human-robot team. To
study the human operator assignment in isolation, we hold
constant the assignment of robot agents and only vary human
operator role assignment. Formally, we define the problem
as follows.

Let O be a set of NV human operators, and R be a set
of M roles, such that N > M. Given O and R, we define
Sp,m to be the true performance score of Operator n € O
executing Role m € R. We define a role assignment as the
function ™ : R — O between operators and roles. We say
that Operator n is assigned to Role m if 7(m) = n. Our
goal is to find the role assignment 7 that maximizes the
cumulative performance score of all operators:

M
S = Z Sx(m),m
m=1

We assume that tasks are independent, so a given assignment
does not affect the performance of other operators.

The above formulation represents a domain-independent
definition of role assignment that is widely used in robotics
research, as surveyed in [19]. However, in the context
of human task assignment, we often cannot assume exact
knowledge of the true cumulative performance S prior to
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Fig. 1: Diagram overview of the assignment pipeline. A prediction model of task performance is fit using prior observations
Z of users completing the cognitive skill tests and human-robot tasks. The model is then used to find the team’s predicted
task scores §, and role assignment is conducted to maximize §.

task execution. This may occur because Operator n has
never performed Role m in the past, or because performance
naturally varies based on the operator’s current cognitive
state (e.g., fatigue or stress affecting cognitive skills). We
term this problem individualized role assignment (IRA),
as individual task performance, and thus the performance of
the entire team as a whole, depends on the cognitive state or
capabilities of the operator. In the absence of the true S, we
formulate the problem as follows:

« We model role assignment with respect to the estimated
cumulative performance S, and perform role assignment
to maximize this estimate, and

e We assume that estimating S by exhaustively testing
N x M role assignments (i.e., exhaustively measuring
each operator’s performance on each task) is not a
viable option given the resource and time constraints
of realistic scenarios.

To address the above problem, we propose that an in-
expensive (w.r.t. resources and time) evaluation of operator
cognitive skills be conducted in order to obtain observations
Z consisting of scores of cognitive skill tests. We then
aim to construct a predictive model fs(-) that can estimate
cumulative performance score S from observations Z and a
specified assignment function 7. Formally, this is given by

g:fS(Za’/T) (1)

As such, we can compute a role assignment 7 that maximizes
S. Individualized role assignment succeeds if the assignment
based on S closely approximates true optimal role assign-
ment based on the true (but unknown) performance score S.
Below, we describe a generalizable solution framework.

IV. INDIVIDUALIZED ROLE ASSIGNMENT

We illustrate the overview of the proposed framework
to solve IRA problems in Fig. 1. First, we construct the
model f5(-) that predicts task performance scores based on
observations of operator capabilities Z (Section IV-A). This
model is constructed based on observations of a preliminary
set of users in order to capture general performance trends.
Second, we use fs(-) to predict the performance scores of
a new, previously unobserved, set of operators for each of

the roles (Section IV-B). Third, we optimize the assignment
of operators to roles such that the estimated cumulative
performance score is maximized (Section IV-C). Below, we
describe each of these three modules in detail.

A. Modeling capability-performance relationships

We first model the relationships between performance
scores and operator capabilities, as measured by cogni-
tive tests. To this end, we collect a dataset by having N
users i) complete a battery of U cognitive tests, and ii)
perform M tasks of interest. We denote this dataset by
D = {ci? s0} Vu € 1,..,U, n € 1,..,N, and
m € 1,..,M, where cg‘?,tla represents an Operator n’s
cognitive skill as measured by the uth cognitive test, and
sﬂiﬁf‘ represents Operator n’s score on the mth task.

Given the dataset D, we train U x M linear regression
models to identify the relationship between each skill-task
pairing. In contrast to requiring considerable historic per-
formance data, these models enable us to predict a new
user’s performance on a task purely based on their cognitive
test scores. In addition to the linear model parameters, the
correlation coefficient of each skill-task pairing is calculated
to measure the strength of the pairing’s relationship. For the
pairing between the u™ cognitive state and the m™" task,
we compute both model parameters (the linear regression
slopes oy, ,, and y-intercepts [, ,,) as well as the correlation
strength (the Spearman’s correlation coefficients 7, ).

We choose to encode skill-task relationships using linear
models as we did not encounter non-linear trends in our ex-
periments. However, note that our framework is not restricted
to linear models and can extended to nonlinear models in
situations that require them.

B. Performance Score Prediction

Given the regression models representing the relationships
between every skill-task relationship, we now turn to the
problem of predicting task performance for new users. Con-
cretely, we begin by measuring the score cg'?f;, for each new
operator n’ on each cognitive skill test u. Given these test
scores and the model parameters «, 3, and 7, we compute the

predicted score 8,/ ,, of Operator n’ on Task m as follows



U
§n’,m = Z ’Ym,u(am,u CZE);/ + ﬁm,u) (2)

u=0

7

where vy, = is the adaptive weight rep-

J—o|Tm
resenting the inﬂue%Eeo‘ of tllle uth skill on the mth task,
and is computed as the corresponding correlation strength
normalized to the sum of all correlations for the task. The
predicted score for each task can be viewed as a weighted

sum of linear predictions contributed by each cognitive skill.

C. Role Assignment

Finally, our framework assigns the N’ new operators to our
M tasks, such that each task has one operator assigned to it.
To this end, we begin by computing the predicted cumulative
score that would have been achieved by assigning the N’
operators according to an arbitrary assignment function 7 as

M
S = fS(Z7 7T) = Z é7r(m).,m 3)
m=1

where Z represents the collection of observations
c’;”l‘?men’ ;m, and Sz () m is computed using the predictive
model described in (2).

As our environment is designed such that each human
can perform one task at a time, each task requires one
human, and assignments are fixed, our assignment problem
falls under the well-established S7-SR-IA classification of
Gerkey’s task allocation taxonomy [14]. The Hungarian
Algorithm [26] is a known solution to ST-SR-IA problems,
capable of identifying the role assignment 7 that maximizes
the predicted cumulative score S, as defined in (3).

V. MULTI-ROBOT EVALUATION DOMAINS

Building upon our recent work [20], we explore individ-
ualized role assignment in the context of three human-robot
tasks: target search, ad-hoc network construction, and sample
return (Fig. 3). We selected these three scenarios because
they represent widely encountered multi-robot scenarios in
search-and-rescue and exploration domains.

Target Search: The operator controls four virtual aerial
robots to search for five targets (caches) in a desert envi-
ronment filled with dead trees and abandoned buildings. The
robots are controlled via a top-down waypoint navigation
interface shown in the middle window in Fig. 3(a). Four
side windows show the view of the downward-facing camera
of each robot, which the operator utilizes to locate the
targets. Operators are given 10 minutes to complete the task,
and their search is guided by a grey area of interest for
each target. The task is designed to challenge an operators
ability to monitor multiple areas simultaneously. The task
performance metric is:

S i min(Dy;(0)) — min(Dy; (1))
T

where D;;(t) is the distance from cache 7 to robot j at time
t, and T is the participant’s total time to complete the task.

“4)

Sp,. =

A participant is scored by their progress towards com-
pleting the task (see Eq. 4), represented by how close they
are to locating each cache, with the participant’s time to
complete the stage used to distinguish between participants
who complete the stage in under 10 minutes.

Ad-Hoc Network Construction: The operator uses four
aerial robots and four ground robots to extend a commu-
nication network from a robot base to five supply caches.
Similar to Task 1, robots are controlled via a top-down
waypoint navigation interface (Fig. 3(b)). The movement of
aerial robots is not limited by obstacles, whereas ground
vehicles will be obstructed by obstacles. Robot control is
constrained to the boundaries of the communication network,
with participants being unable to move robots that are not
connected to the primary network, requiring participants to
extend the network gradually from the base. This task is
designed for participants to benefit from their ability to
visualize how the network topology will change as robots
are relocated. The task performance metric is:

T

mtaX(C'(t)) )

Sp,. =

where T is the participant n’s total time to complete the task,
and C(¢) is the number of caches connected to the network
at a time ¢.

Sample Return: The operator controls four ground robots
to return five supply caches to the base. Similar to the
other tasks, robots are controlled via a top-down waypoint
navigation interface (Fig. 3(c)). Operators benefit by their
ability to navigate the ground robots to reach and return
the caches, while avoiding obstacles and rerouting robots as
necessary. The task performance metric is:

4 .
Zi:o Dijcollect (O) - mln(Dijcollect (t))

t,j
, r ©6)
> i=0 Dijrerurn (0) — I%BD(Dij,-etum (1)

T

where D;;. ... (t) is robot j’s distance to collecting cache
i at time ¢, D;j,,....(t) is robot j’s distance to returning a
collected cache 7 at time ¢, and 7T is the participant n’s total
time to complete the task.

Sp,_ =

+

Each of the above scenarios is of similar complexity
and can be carried out by a human operator with minimal
training. However, we hypothesize that each of the three roles
require different types of cognitive reasoning. We utilize the
cognitive ability tests presented in the following section to
obtain observations Z and train fs(-).

VI. COGNITIVE SKILL TESTS

To represent a participant’s cognitive state we apply three
cognitive skill tests. We choose cognitive abilities that match
the cognitive requirements of our human-robot interactive
tasks, and design a short browser-based test for each cog-
nitive skill. The tests are grounded in cognitive science
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Fig. 2: Screenshots of each human-robot teaming task. In Target Search, users navigate aerial robots to find caches hidden
in a map. In Ad-Hoc Network Construction, users position aerial and ground robots to extend a communications network.
In Sample Return, users navigate ground robots to collect and return caches to a central base. Tasks are completed virtually.
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Fig. 3: Overview of each cognitive skill test: Object Track-
ing (Visual Attention), Network Inference, and Situational
Awareness. In each test users observe an environment, and
then are asked questions pertaining to the target cognitive
skill. Each test has multiple increasingly difficult stages.

literature, take around 10 minutes to complete, and are
difficult enough to capture variation between users.

Visual Attention: Visual attention is a user’s ability to
track environment stimuli. As all three of our human-robot
interactive tasks involve managing multiple robots, visual
attention may be important to user performance at our tasks.
An established test for visual attention, multi-object tracking,
has a participant keep track of one or more of a set of
identical balls for a period of time as the balls collide and
deflect, and then has the participant identify the tracked balls
[24], [27]. We apply this test using 15 balls total, and have
participants incrementally track from 1 to 7 balls (Fig. 3 left).
Participants are scored by their total number of correctly
identified balls from the 2nd through 7th rounds.

Network Inference: Network inference is a user’s ability to
learn and infer a hidden graph structure between nodes. As
two of our human-robot interactive tasks involve leveraging
network connections between robots, participants who are
able to effectively identify graph connections may perform

better on those tasks. Our network inference test is based
on work in [21] and validated by our prior work [20].
Participants are presented with a set of nodes, and watch
examples of color propagating through the nodes at interval
timesteps. Participants then identify the starting node that en-
ables color propagation in the least number of timesteps (Fig.
3 middle). Participants have up to three guesses per network,
and are scored by their guesses cumulative timesteps from
the optimal node.

Situational Awareness Situational awareness is a user’s
ability to maintain an accurate mental model of a changing
environment. This is pertinent to managerial human-robot
interactive tasks where operators must maintain situational
awareness of robot locations. Related work has shown sit-
uational awareness to be correlated to task performance
[31], however situational awareness is variable within a task.
We instead measure a user’s ability to maintain situational
awareness given increasing environment complexity. Our
test is based on the SAGAT format [13] and was used
in our prior work [20]. In the test, participants watch a
stream of packages be distributed throughout a network of
warehouses. Warehouses distribute packages at a lower rate
than the package influx, resulting in network breakdowns
as warehouses become full. The participant is periodically
asked to identify the storage level of each warehouse (Fig.
3 right). As more warehouses overfill, the network breaks
down, increasing the situational awareness required to keep
track of the warehouse states.

VII. USER STUDY DESIGN

We verified our approach by conducting a user study based
on the tasks and cognitive tests described in the previous
section. We recruited 29 participants for the study from the
Georgia Tech community (Ages 18 to 30; 38% female; 69%
novice robot operators).

Each participant completed the U = 3 cognitive skill tests
from Section VI followed by the M = 3 simulated human-
robot teaming tasks from Section V. Participants completed
all six study components virtually while on a video call with
a researcher. We applied counterbalancing to both the order
of cognitive skill tests, and the order in which human-robot
teaming tasks were presented.



To model fs(-), we split the data from all participants
into a training set and test set. Data from participants in
the training set was used to fit the predictive model fs(-) to
model correlations between the cognitive test scores and task
performance. Data from the test set was withheld and used
to validate the performance of the role assignment algorithm.

For each experiment, the size of the test set was set to
N, the number of operators available for the algorithm to
choose from. For example, if N = 5, then five operators
are available to be selected for M = 3 roles. We refer to the
selected operators as a team, and report their cumulative task
performance score'. In each experimental trial, we used fs(-)
to predict how well each of the N operators would perform
each of the three task roles (target search, ad-hoc network
construction, and sample return), and assign them to roles to
maximize the total team performance. We hypothesize that
each of our three roles requires different types of cognitive
reasoning, leading us to the following research hypotheses:

Research Hypothesis 1: Given an equal number of operators
and roles (N = M), individualized role assignment will lead
to improved total team performance over random operator
assignment.

Research Hypothesis 2: The improvement resulting from
individualized role assignment will be greater as N grows
larger than M.

The second hypothesis stems from the fact that given mul-
tiple operators to choose from, the model will be able to
identify more suitable individuals to assign to the tasks,
leading to further improvements in performance.

VIII. STUDY RESULTS

We conducted the following experiments to validate our
two research hypotheses.

Experiment 1: To validate our first hypothesis, we evaluated
all possible teams of N = 3 participants, resulting in (239)
= 3654 teams. For each evaluation, we used the team’s
unique combination of 3 participants in the test set, and
the remaining 26 participants in the training set. We report
role assignment results for the following four assignment

conditions:

o random (baseline) — baseline approach most widely
used in prior work, which does not take individual
operator differences into account;

o worst (ground truth) — the worst possible performance
achievable by the IV — 3 operators if they were assigned
to their least optimal roles, included for comparison;

o best (ground truth) — the best possible performance
achievable by the N — 3 operators if they were assigned
to their most optimal roles, included for comparison;

e IRA (algorithmic approach) — our approach for auto-
mated role assignment based on cognitive pretests.

Figure 4 presents a comparison of the above four role
assignment variants. The top row (A) shows that random

'The performance of the operators on the team is independent from each
other in this experiment.
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Fig. 4: Histograms of cumulative performance scores for all
teams using several assignment methods, with N = M = 3.
A shows the baseline random assignment. B shows the
worst possible assignments using each team’s observed task
scores. C shows the best possible assignments using the
observed task scores. D shows scores from individualized
role assignment.

performance is widely spread, though not entirely uniform in
its distribution due to fact that participant abilities themselves
were not uniformly distributed. Rows (B) and (C) show
the worst and best ground truth assignments, respectively;
these are obtained based on each participant’s true task
performance in each role. We observe that even in row (C)
some teams perform significantly lower than others, which
occurs when three lesser-skilled participants are grouped to-
gether. Finally, in row (D) we observe the IRA performance.
Comparing IRA to the random condition, we observe the
median cumulative performance score increases by +0.30
(23.5%). Additionally, 30.9% of IRA teams were optimally
assigned, compared to only 16.6% of random teams.

Given N = 3 operators and M = 3 roles, IRA has a total
choice of 6 possible unique role assignments to make for
each team. Fig. 5 shows how the IRA-chosen role assignment
ranks in comparison to the other choices. If role assignment
were to be performed at random, we would expect each
possible role assignment to be equally likely, meaning that
the best possible assignment would be just as likely as the
worst. This value is shown by the horizontal line in the figure.
In comparison, we observe that IRA is 4.0 times more likely
to select the best assignment than the worst assignment, and
overall 72.6% of IRA teams outperform random assignment.
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In summary, we find that these results support Hypothesis
1, and that given an equal number of operators and roles
IRA significantly outperforms random operator assignment
(Mann-Whitney U test, p < 0.001).

Experiment 2: To investigate our second hypothesis, we
vary the number of available operators from N =3 to N =
7. Figure 6 compares the cumulative performance scores
of teams formed across the random and IRA conditions.
We observe that for all N trialed, IRA shows significant
performance improvement over random assignment (Mann-
Whitney U test, p < 0.001), and median cumulative perfor-
mance scores increased monotonically from 1.593 (N = 3)
to 1.703 (N = 7).

IX. SUMMARY AND DISCUSSION

We find that a team’s cognitive states can be leveraged
to improve human-robot teaming. Through evaluating user
data from three cognitive skill tests and three human-robot
operator tasks, we find that role assignment using team

member cognitive states result in scores significantly better
than random assignment, and outperform random assignment
in 72.6% of cases. Our work reinforces prior work suggesting
that components of cognitive states can predict the perfor-
mance of impending robot operator tasks [20], and verifies
our hypothesis by applying the concept to meaningfully
improve role assignment.

The assignment pipeline presented is a baseline that fu-
ture work can improve upon. We explore several potential
modifications to its components. In Component I, using
correlation coefficients as a weighting mechanism results in
weak correlations still having meaningful weight. However,
exponating the correlating coefficients — to force a greater
disparity between meaningful and chaotic correlations — did
not improve performance. Alternative weighting mechanisms
can be considered to better prioritize skill-task relationships
that are impactful for predicting task performance.

We also find that the metrics used to score tasks have large
effects on the pipeline’s performance. We trialed 10 scoring
metrics for the three human-robot collaborative tasks (2 for
Task 1, 5 for Task 2, 3 for Task 3). All metrics were monoton-
ically decreasing measurements of task progress. Different
metrics resulted in a range of average rank percentiles, from
as low as 52.7% (random: 50.0%) to as high as 69.2%.
Selecting an effective performance evaluation metric can be
critical for finding stronger trait-task correlations.

Our work opens several avenues for future work. In the
assignment pipeline, Component 1 modeled skill-task rela-
tionships using linear regressions — alternative models (e.g.,
neural networks) may capture more complex relationships.
Additionally, our study was situated in a virtual environment
— using real-world robot operation tasks may result in dif-
ferent skill-task relationships. Including more cognitive skill
tests and human-robot tasks can also further our understand-
ing of how cognitive states affect HRT performance.

Another direction for this work is to integrate team dynam-
ics. We limited our study design to prevent team dynamics
from affecting task outcomes, by making tasks independent
and isolating users. In reality, collaborative teamwork is an
integral component of many teams. Future work can draw
upon the team effectiveness literature to consider additional
variables in role assignment for multi-user environments.

X. ETHICAL CONSIDERATIONS

Our work raises important ethical questions of whether
individual human differences should be considered in role
assignment, particularly with how differences can be used to
justify discrimination in workplace and social environments.
Importantly, our work uses cognitive states, not descriptive
traits such as physical or developmental traits. Our work is
reliant on the present mental state of users, using cognitive
abilities that are dynamic in nature and uncoupled from
descriptive traits. We are interested in the relevance of
cognitive states towards robot operation performance at the
time of role assignment, not long term, and thus do not
see our work being applied to further political and social
prejudices.
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